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Cavity—loaded piston ansducers can be made to work at“htgﬁ'”’
hydrostatic pressure by operating the resonator in a liquid-filled
cylinder. The measured and theoretical performance of transducers

extension of the work reported in the Journal of the Acoustical
Society of America, September 1962.

R

To design transducers that can be used at very great depths without

deleterious effects on their performance characteristics requires

AMAO4A5487

techniques that entirely avoid pressure release materials. Some progress
is being made in the fabrication of pressure release material, but thus
far the stability desired has not yet been achieved, especially at very
high hydrostatic pressure. :

An alternate approach is the use of fluid-filled transducers and the
control of the acoustic parameters to achieve the desired properties.
This paper describes some of the results of experiments directed toward
this endi‘

The transducers generally were of the type shown on Slide 1. This is
the design reported on in the September issue of the Journal. It is a

double mass-loaded ceramic stack with the weight of the vibrating structure

small <o that the acoustic impedance is high and essentially isolates the

back of the piston.
The cylindrical sleeve arcund the dumbbell i¢ of l-inch-thick stesl,

The depth of the cavity in front of the piston can be varied to change

DD

of this type with various fluids is given. This paper is an : ”erﬂn HE
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supported on the back O-rings; The slit around the front mass is kept very 5
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\ the acoustic load on the piston.
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. The equivalent circuit can be represented as shown in Slide 2. Ve
i 4 .
have represented the impedance due to the liquid between the masses as
the cotangent funcfion. The presence of the oil or O-ring in the slit is

the primary cause of dissipation, and requires some juggling of the shunt

acoustical impedance against the series viscous loss in the slit. The

motion around this area is undoubtedly much more complicated than we

e R D TR 2

would be able to describe with a simple lumped electrical equivalent

if % circuit; however, the éeneral éoncepts are much more easily seen with the

analog. Also, the coupling of vibration from the walls and back to the
water has not been considered. Apparently this radiation is not signifi- :

cant below the first resonance of the case. The cavity is represented by

. the Mason approximation for a transmission line.

The following slides will show the measured characteristics of the

resonators under various conditions.
Slide 3 - This is a VILP pattern with the resonator in the tube

supported on the back O-rings with no oil. This gives an idea of the Q
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when there is no restraint on the front mass.

The smaller curve represents the transducer in air, filled with
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mineral spirits. The very small loop is the transducer in water. The

—

detail cannot be seen but the contrast is interesting because the differ-

ence in magnitude is a measure of the efficiency.
1 5 Slide 4 gives the characteristics of the first-transducer without oil
| (that is, air-backed, with an O-ring seal), compared with the characteris-

tics when castor oil completely fills'the cavity and cylinder. Two things

are 1mmediate1y apparent. The loss is higher and there is a hole in the

response at the frequency corresponding to approximately half a wavelength

' 3 LILABILITY coDES |
between the masses when the cavity and cylinder are oll filled. To assure. wiw g
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ourselves that there was no mistake in interpretation, we padded the

*inside of the back mass with corprene, which shifted the phase, and the
hole dis;ppeared from this region. These results are for the optimum
cavity ‘'depth, that is, the depth that tunes the cavity to couple in with
the mechanical resonance.

Slide 5 shows the ;ffec£ of cavity detuning. Here, the cavity resonance
shifts from be19w to the region of mechanical resonance.

The major effort has been directed toward finding a better fluid.

The ideal fluid will have the sound speed and density of water, and very
low viscosity. As a matter of~fact, water ‘1s the perfect fluid if you
want to bother to insulate the ceramic.

Slide 6 shows the characteristics of a resonator filled with mineral
spirits. The inside chamber was reduced in length, thus moving the
half-wave resonance out of the frequency range ¢ . rest. The sound
speed in mineral spirits is lower than that in water so that the depth of
the cavity had to be reduced to shift the cavity resonance up to couple
to the mechanical resonance. The viscosity of kerosene is about 2.0 centi-
poise, so that the efficiency here is high, between 80 and 90%.

Typical directivity patterns are shown in the following slides.

Slide 7 shows a castor oil filled unit. The directivity in each case
is compared with the theoretical directivity of a flat piston in a long
tube. The influence of the cavity on the directivity has not been
explained, but obviously there is a marked effect..

There are several possibilities for adding flexibility to this tech-
nique. A cavity can be added to the back mass to further control the
directivity. Certain caviiy dimensions will reduce the radiation load to
less than the value for a plane piston. This would serve to reduce the

power out to less than that from the plane piston. High density tungsten
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can be used alsu to reduce the area of radiation while keeping a high mass.

~* Slide 8 shows a transducer with mineral spirits in the front cavity
) L

3/4 inch deep, water in a back cavity spproximately 14 inch deep. Notice
the back radiation is about 9 dB lower than it is when the case has no
cavity in the back.

The impedance in ;he fiuid can be tailored to aid the response. For
example, a quarter-wave condition makes this cotangent zero. Between a
quarter and a half wav;, this impedance is a positive reactance which can
be used to lower the resonance.

The work reported here has been largely exploratory. It seems, however,

that this technique could be valuable in deep-water transducer problems,
and in arrays where the flexibility of acoustic load could aid in improv-

ing the mutual impedance loading.
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— I} DEEP CAVITY AT END OF TUBE (MEASURED)
---- PISTON AT END OF TUBE (THEORETICAL)
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